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Topic 3-1: General Theory of Diffraction  

 

Summary: In this video diffraction is introduced. The goal is to develop a mathematical 

expression for intensity at the detector of a diffractometer. The first step is to describe the 

interaction of the source with the sample by finding the amplitude of the wave emitted by the 

source at one point in the sample. We then repeat this process and find the amplitude of the wave 

emitted by the sample at the detector. We then extend this equation to include all points in the 

sample and relate our amplitude expression to intensity.  

 

 Diffraction: the study of how an incident wave interacts with matter (the sample) 

 Will develop a mathematical expression for wave intensity at a detector – practically 

useful for inferring information about the sample 

 Good background knowledge is the interference pattern created by the double slit 

experiment along with Fourier series and transforms  

 Assumptions we can make about diffraction 

o Elastic wave/sample interaction 

 No energy is exchanged between the wave and the sample 

o There exists a scattering density n( ⃑) that depends on the spatial arrangement of 

atoms 

 This spatial dependence is little  ⃑ 

 Below is a figure showing how  ⃑ is used to label points within a sample 

 

 Can define any point in the sample in terms of the vector little  ⃑ 
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Diffractometer 

 

 Above is a figure depicting the first part of a diffractometer: the source, waves emitted by 

the source and the sample 

 The diffractometer begins with the source, which emits incoherent spherical waves, and 

the sample, with which the sources radiation will interact 

 The magnitude of the vector  ⃑⃑ is much greater than the magnitude of  ⃑ so we can assume 

that the waves incident on the sample are plane waves 

o This means we can treat the wave vector  ⃑⃑ as parallel to  ⃑⃑ 

 Want to know the amplitude of the wave in the sample at any time t 

o This amplitude expression will need both a spatial and a time component 

o The spatial component begins with the total distance traveled by the wave, that is 

to say  ⃑⃑+ ⃑.   

o The time component arises from the frequency of the wave, omega 

o The spatial expression is    ⃑⃑   ⃑⃑  ⃑  while the time component is       

o Putting this all together we get an expression for the amplitude at the sample 

                                    ⃑       
   ⃑⃑ ( ⃑⃑  ⃑)        [1] 

 This is the amplitude expression we have been after 

o Recall intensity is Fs*Fs.  Thus, the source wave intensity will be constant 

throughout the sample because the complex exponential term in Fs will drop away 

due to the complex conjugate.  Just the amplitude is varying in space and time.   

 We can treat the sample as though each point will absorb the incoming radiation and then 

re-emit it spherically, like the source does 

 The tendency for a sample to scatter an incoming wave at any position  ⃑ is determined by 

the scattering density, n( ⃑) 
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 Now we need to add in a detector to sense the waves scattered off of the sample 

 

 We want the amplitude of the scattered wave at the detector 

 Approach: First, we’re going to consider the amplitude at the detector from one little 

region of sample at  ⃑, then we’re going to integrate across the sample to determine the 

total amplitude at the detector. 

 Treat electron density at position  ⃑ as a spherical emitter.  Basically, the incident source 

radiation wiggles the electrons in the sample, and these wiggling electrons act as 

spherical emitters.  For simplicity’s sake, we’re not going to consider the angular 

dependence of this re-emission yet. 

 Waves from the sample will have a spherical decay in amplitude that goes at 
 

  ⃑⃑   ⃑ 
, where 

 ⃑⃑  is the distance from the sample to the detector and  ⃑ once again describes a point in the 

sample 

o Assuming once again that the magnitude of  ⃑⃑  is much larger than the magnitude 

of  ⃑ we can simplify this to 
 

  ⃑⃑  
 

 We can again treat the wave at the detector as a plane wave 

o This means we can again assume that the wave vector of the wave hitting the 

detector,  ⃑⃑’
 is parallel to  ⃑⃑  and we can use the same complex exponential from as 

we did for the amplitude at the sample 

 The only difference with this complex exponential is it now has a factor out front that is 

the scattering density times the spherical decay determined earlier 

 This gives:  

                                                            
     ⃑ 

  ⃑⃑  
   ⃑⃑    ⃑⃑   ⃑     [2] 

Sketch the vectors R+r and R’-r 
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o where we now have an ( ⃑⃑’
- ⃑) term for the path length difference that the scattered 

wave has traveled 

 

 Talking through the above equation:  The amplitude at the detector from a single point  ⃑ 

within the sample is given by: (a) the incident amplitude at that point  ⃑, (b) the scattering 

density at that point, (c) a complex exponential term that deals with oscillating amplitude 

as the wave travels from the sample to the detector and (d) a decay term in the 

denominator that accounts for the spherical wave decaying in amplitude as it propagates 

away from point  ⃑ within the sample.  

 

Checking some limits:  

o When the source is off, Fs is zero and the wave at the detector has no amplitude. 

o When the detector is infinitely far away ( ⃑⃑ → infinity), there is no amplitude at 

the detector 

o When there is no sample at position  ⃑, there is no scattering density. The incident 

wave does not interact with the sample in this region and no amplitude at the 

detector is generated from this point.  

 

 Since this equation is rather messy (recall Fs from above) we do some rearranging: 

                                                  ⃑      ⃑     ⃑⃑  ⃑⃑    ⃑    [3] 

o where  ⃑ and both  ⃑⃑’s are vectors 

  ⃑⃑- ⃑⃑  is the change in wave vector which we can combine into one term called delta  ⃑⃑, 

Δ ⃑⃑=  ⃑⃑⃑⃑ - ⃑⃑ 

 This makes our previous equation  

                                                        ⃑       ⃑⃑   ⃑    [4] 

 This equation is just for one point in the sample, to get all points need an integral across 

the sample volume 

                                              ∫    ⃑      ⃑⃑  ⃑  ⃑
 

    [5] 

o This is an integral over volume of our previous expression 
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 As we sum over all exit waves from our sample volume, they will constructively or 

destructively interfere to produce a final net amplitude at our detector 

 This integral is the Fourier transform of our scattering density with respect to our change 

in wave vector. Whoa.   

 Most detectors measure intensity 

o Not a problem because I=|F|
2
 

o Intensity measurements result in the loss of phase information.  This is a big deal! 

So much for the inverse Fourier transform to back out n(r). 
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Questions to Ponder 

1. What sort of allowed waves can be used for the source? 

 

 

 

 

2. Compare constructive interference and incoherent radiation. Our source tends to produce 

incoherent radiation, how does that work? 

 

 

 

 

3. Can an inverse Fourier transform give us back our scattering density? Why or why not? 

 

 

 

 

4. What space do  ⃑⃑ and  ⃑⃑’
 exist in? 

 

 

 

5. Why is it a R
-1

 decay in wave amplitude? Can you argue this from conservation of 

energy? 


