
Colorado School of Mines                                                             Solid State Physics in a Nutshell 
solidstate.mines.edu  

 
Topic 8-3: Heat Capacity 

Kittel Pages: 141-147 
 

Summary: In this video we look at two methods to solve for the electronic heat capacity. The 

first is a rather simple approach involving taking the area of rectangles within a graph. The 

second approach is more mathematically robust. Finally, we end with a discussion of why this 

concept is important in experiments today. 

 

• Motivated by experiment 

o When heat capacity of metals was first measured it was much lower than expected 

o Today we will discover why the electronic heat capacity of metals is so low, not 
3
2
𝑘𝐵 per electron like a gas 

• Will need to develop an expression for heat capacity of an electron gas 

• Recall that the number of electrons in the system is given by 𝑁 = ∫ 𝑑𝐸 𝐷(𝐸)𝑓(𝐸)∞
0  

• At 0 K this gives filled states up to some maximum energy 

• But as temperature increases we get smearing of our step function and we can 

approximate this smearing width as 2𝑘𝐵𝑇 on either side of the Fermi energy 

• This means low energy electrons will not be excited past the Fermi energy 

• Thus, not all electrons will be able to contribute to the heat capacity 

Approach 1: Area of Rectangles 

• Begin with a ridiculously simple approach to determine the fraction of electrons that 

contribute to heat capacity 

• For an N electron system we can invoke that there is an area contained in the rectangle 

below that contains electrons that can be thermally excited 
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• This area is 4𝑘𝐵𝑇 ∙ 𝐷(𝐸𝑓) 

• The total number of electrons, can be coarsely approximated by the bigger area is 

𝐸𝑓 ∙ 𝐷�𝐸𝑓�, drawn with thick black lines 

• The fraction of thermally excited electrons to the total is thus roughly 4𝑘𝐵𝑇∙𝐷(𝐸𝑓)
𝐸𝑓∙𝐷�𝐸𝑓�

, which 

simplifies to 4𝑘𝐵𝑇
𝐸𝑓

 

• This ratio is useful in finding out how the electronic energy of the system changes with 

temperature 

• Can describe thermal activation as 𝑈 = 𝑁 ∙ 4𝑘𝐵𝑇
𝐸𝑓

∙ 𝑘𝐵𝑇 

o This is total number of electrons, N, times the fraction that can be thermally 

excited at temperature T times the energy of thermal activation 

• Can rewrite Ef as kBTf 

o Tf is the Fermi temperature. Not a physically relevant unit, just a unit conversion 

trick 

• Now 𝐶 = 𝑑𝑈
𝑑𝑇

= 8𝑁𝑘𝐵
𝑇
𝑇𝑓

  

o We have replaced the Fermi energy with the equivalent temperature and taken the 

derivative w/ respect to T. 

• Typically the Fermi energy is 5-8 eV which makes the Fermi temperature in the 70000 K 

range 

• This heat capacity is very consistent with experiment unlike the 3
2
𝑘𝐵𝑇 expression 

• This helped validate quantum mechanical models of the electron as a fermion 

 

Approach 2: Electronic heat capacity - Beyond boxes! 

• Taking areas of rectangles isn’t a great mathematical model, even if it works 

• Want a more exact calculation 

• Can write the system energy as 𝑈 = ∫ 𝑑𝐸 𝐷(𝐸)𝐸 𝑓(𝐸,𝑇)∞
0  

o  𝑓(𝐸,𝑇) = 1

𝑒(𝐸−𝐸𝑓)/𝑘𝐵𝑇+1
 

• Want an E-Ef term in the integral to simplify it  
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• Recall 𝑁 = ∫ 𝑑𝐸 𝐷(𝐸)𝑓(𝐸,𝑇)∞

0  

o Multiply N by Ef and take the derivative with respect to T 

• 0 = ∫ 𝑑𝐸 𝐷(𝐸)  𝐸𝑓 
𝜕𝑓
𝜕𝑇

∞
0  

o Since this equation equals zero we can subtract it from our heat capacity equation 

• 𝐶 − 0 = ∫ 𝑑𝐸 𝐷(𝐸)(𝐸 − 𝐸𝑓)∞
0

𝜕𝑓
𝜕𝑇

 

• Approximate that the density of states is constant at the Fermi energy 

o Can pull it out of the integral 

• 𝐶 = 𝐷(𝐸𝑓) ∫ 𝑑𝐸 (𝐸 − 𝐸𝑓)∞
0

𝜕𝑓
𝜕𝑇

 

o Let 𝑥 = (𝐸−𝐸𝑓)
𝑘𝐵𝑇

 

• 𝐶 = 𝑘𝐵
2𝑇 𝐷(𝐸𝑓) ∫ 𝑑𝑥 ∞

𝐸𝑓/𝜏
𝑥2𝑒𝑥

(𝑒𝑥+1)2
 

• This gives 𝐶 = 1
3
𝜋2𝐷(𝐸𝑓)𝑘𝐵

2𝑇 

o This is linear in temperature, just like the rectangle approach!   

 

Why is this important in experiment today 

• Can approximate 𝐶𝑡𝑜𝑡𝑎𝑙 = 𝛾𝑇 + 𝛽𝑇3 

o γ is the electronic part 

o β is the phonon part 

• At low temperatures, around 5 K, the electronic part is bigger than the phonon part 

• Rewrite  as 𝐶
𝑇

= 𝛾 + 𝛽𝑇2 

o Slope of the line is β, offset from the origin is γ 
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• From experimental γ values, one can calculate 𝐷(𝐸𝑓) for metals 

• E-Ef df/dt is really common in solid state physics problems, where you’re looking at the 

electrons right near the Fermi level. 

 

             

 Sketch the components of this function out 


